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Avgda. Diagonal 647, Barcelona 08028, Spain
3 Department of Physics, University of Crete and Foundation for Research and
Technology-Hellas, PO Box 2208, 71003 Heraklion, Crete Greece

Received 8 May 2001
Published 5 October 2001
Online at stacks.iop.org/JPhysA/34/8465

Abstract
We present the study of discrete breathers moving resonantly in a two-
dimensional polymeric hairpin-shaped model with perpendicular onsite
potentials. Their motion adapts to the local dynamical environment and move
more efficiently in the curve in several cases. This motion is locally governed
by conservation of energy. Weak dissipation and thermal noise do not affect
these phenomena qualitatively.

PACS numbers: 05.45.−a, 02.60−x, 05.40.−a, 05.90.+m, 81.05.Lg

1. Introduction

Discrete breathers (DBs) or intrinsic localized modes (ILMs) are localized oscillations that can
trap and transfer efficiently vibrational energy many times in discrete nonlinear lattice systems
[1–9]. They are interesting theoretically since they act in a way similar to impurity modes in
systems with translational invariance, and they are also interesting experimentally since they
seem to arise naturally in diverse systems with high effective nonlinearity [10–13]. It has been
conjectured that DBs can play an important role in energy storage and transfer in biomaterials
such as proteins [9, 14]; as a result, the role of biopolymer geometry and its interplay with
nonlinearity will be a decisive factor in efficient energy and mass transport across a biomolecule
[15, 16]. Recent work in this direction has demonstrated that DBs can indeed be created in
curved nonlinear lattice chains and can also propagate across polymer bends [17, 18]. In
particular, in reference [18] it was demonstrated that if a standard Fermi–Pasta–Ulam (FPU)
chain is constrained on an arbitrary planar curve and DBs are constructed in a rectilinear part of
the chain, they can traverse a circularly curved part of the chain with a speed smaller than that
of the injected one provided the penetration angle to the curve is not too large; in the opposite
case they simply rebounce or get trapped. Even though this work shows basic features of
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Figure 1. (a) Schematic representation of the equilibrium conformation for the hairpin. Black
dots are the equilibrium positions of the particles in the hairpin for Nc = 5. The location labelled
by 1 is a typical starting point for the breather, 2 denotes a point in the curve and 3 a final point.
(b) White dots are the nonequilibrium position of the particles with their polar coordinates used in
some of the figures below to represent the motion of the breather in the curved part of the hairpin.

DB dynamics in curved polymers, it does not address fully the two-dimensional case since it
tackles constrained motion with fixed angles. In the present work, we lift this restriction and
handle the complete two-dimensional dynamics of a polymeric chain in the shape of a hairpin,
viz. that of two straight segments joined by a semicircle. In a biological context this shape
can describe a β-sheet connection of a protein or a similar DNA configuration. Our model
then consists of an FPU chain in the form of a hairpin that is confined via onsite potentials
in the direction perpendicular to that of the hairpin; their role is to stabilize the chain that
is naturally degenerate on the plane due to the inclusion of only first neighbour interactions
[15, 16, 18]. The questions we would like to address revolve around the following points:
(a) What are the kinetic properties of a DB launched in the rectilinear part of the chain towards
the curved one? (b) How does the inclusion of the second dimension and the presence of the
onsite potential affect the DB motion? (c) Is the motion dynamically stable at low ambient
temperatures, i.e. under the simultaneous presence of Langevin noise and small damping? In
section 2 we introduce our model and describe the numerical scheme, and in section 3 we
present the main results and the answers to questions (a) and (b). In section 4 we study the
DB dynamics under fluctuation–dissipation conditions, and finally in section 5 we conclude.

2. Model for the hairpin chain

The model presented in this paper is developed in Cartesian coordinates, using a nearest-
neighbour interaction that follows the FPU potential for the distance between nearest

nodes, dn = [
(xn − xn−1)2 + (yn − yn−1)2

]1/2
, where (xn, yn) denote the absolute Cartesian

coordinates of the nth mass m. This potential reads

Vd(dn) = K
2 (dn − a)2 + β

4 (dn − a)4 (1)

where K and β are the constants of the FPU model and a is the equilibrium separation
between two adjacent sites of the chain. We also include a ‘perpendicular-to-the-hairpin’
onsite potential in order to keep the hairpin shape. The equilibrium hairpin conformation in
Cartesian coordinates is shown in figure 1(a).



Resonant motion of discrete breathers in curved nonlinear chains 8467

The perpendicular potential reads

Vp(rn) = 1
2K2r2

n + 1
4K3r4

n (2)

where rn designates the radial distance to the equilibrium point in the semicircle (see figure 1(b))
or the vertical distance orthogonal to the equilibrium line in the rectilinear segment of the
hairpin. With this potential, the chain always tries to recover the hairpin conformation, but
it is not rigidly constrained to such a shape as it was in [18]. Moreover, the perpendicular
potential avoids the generally unstable arbitrary motion on the plane [15, 16].

Considering both potentials we obtain the following Hamiltonian:

H =
∑

n

(
ẋ2

n

2m
+

ẏ2
n

2m

)
+

∑
n

[
Vd(dn) + Vp(rn)

]
. (3)

In our numerical simulations, a certain number of nodes are placed at the equilibrium
positions, i.e. rn = 0 and dn = a, ∀n. This implies that the number of sites initially in the
curved part of the chain, Nc, will determine the radius Rc and subsequently the curvature of
the hairpin. As the equilibrium distance a is fixed, the relation between Rc and Nc follows
from simple geometric calculations,

Rc = a

2 sin
(

π
2(Nc + 1)

) . (4)

We generate numerically one-dimensional exact discrete breathers following the
anticontinuous limit procedure [4] and place them along the longitudinal x-axis on the hairpin
(close to point 1 of figure 1). Specifically, we use an initial breather with a period of
Tb ≈ 2.1223 from a single pulse in relative one-dimensional coordinates (ρn ≡ xn −xn−1 −a).
Since we are interested in energy transport properties, we need to induce the motion by giving
some values to the initial velocities {ρ̇n(0)}. Using a simple approximation of the pinning
mode excitation method [5], we initially kick the breather by assigning a proportion λ of the
gradient of its absolute value, or velocity pinning mode vector {|ρn|′},

ρ̇n(0) = λ|ρn|′ (5)

where spatial derivatives are taken to be symmetric. This translational motion, as it is defined,
sends the breather from the sites near point 1 in figure 1 to the curved part of the chain. This
approximate procedure for generating mobile DBs causes the detachment of a small portion
of the initial breather energy that propagates away very fast with a localized phonon shape.
The initial breather in relative coordinates, ρn, and velocities, ρ̇n, are shown in figure 2.

3. Numerical results

Numerical results are obtained by using a fourth-order Runge–Kutta method to solve the
equations of motion (directly in Cartesian coordinates) that follow from equations (1)–(3). We
fix some of the parameters that describe the model. For the equations of motion, we set K =
β = 1 and a = 3. For the velocity parameter λ, a value of 0.8 is assigned. This value
corresponds to a translational velocity of the breather (in the straight part of the chain) equal
to 0.45 in our dimensionless units of space and time (the speed of sound has value 3 in these
units). Moreover, in our simulations the total number of sites is larger than 1000, and as a result
no phonon–breather interaction takes place during the simulation. The specific perpendicular
potential parameters, i.e. (K2, K3), and the curvature of the hairpin fixed by the number of sites
in the curved part of the chain, i.e. Nc, determine the different cases to be studied.
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Figure 2. (a) The initial breather in relative coordinates. (b) The initial velocities (for λ = 1) also
in relative coordinates.

The onsite perpendicular potential plays a central role in the breather dynamics since it
is responsible for localized energy interchange and directional mixing in the curved part of
the hairpin. Although in most of the cases the breather is found to be able to traverse the
hairpin, there is some energy loss during the initial entry in the curve. This loss depends on
the nature of the energy interchange between the radial and tangential DB direction in the
bend that is also responsible for the specifics of the DB propagation through the bend. A
suitable selection of the onsite potential parameters (K2, K3) minimizes the energy loss and
permits the resonant motion of the breather through the bend. In order to check these ideas, we
compare four different cases: two quadratic perpendicular potentials with K2 = 1 and K2 = 8
and two hard potentials with K2 = K3 = 1 and K2 = K3 = 6. In figure 3(a), we plot the period-
versus-amplitude dependence of the individual potentials and note that only the anharmonic
potential K2 = K3 = 6 and the harmonic case K2 = 8, K3 = 0 have a period very close to Tb.

It is clear from figure 3(b) that the breather adapts better in the anharmonic cases. For
example, for the purely quadratic case with K2 = 8, where the DB frequency almost coincides
with the frequency of the perpendicular potential, the breather cannot traverse the hairpin.
In some other cases with K3 = 0, the breather is able to tranverse the hairpin but these
appear to be exceptional situations and depend on the frequency shift of the DB relative to
the harmonic frequency. Actually, the quadratic case with K2 = 1 in figure 3 corresponds to
one of these situations. Although a purely quadratic onsite potential does not allow by itself
more than one single frequency for the perpendicular motion, the existence of nonlinearity
in the interaction potential, Vd(dn), provides an alternative mechanism to traverse the hairpin
which is not always effective, as we have seen in the case K2 = 8. The presence of nonlinearity
in the onsite perpendicular forces introduces frequency shifts that improve the resonance in the
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Figure 3. (a) Period of oscillation T for a single local potential Vp in (2), as a function of the
initial amplitude A(Tb ≈ 2.1223). (b) Evolution of the energy of the breather defined as the sum
of the local energy for the ±4 sites around nmax, where nmax is, in turn, defined as the site with
largest local energy in the chain, viz. the centre of the breather. In these simulations Nc = 51. At
t ∼ 170, the breather enters into the curved region.

perpendicular direction, so that the energy loss is less dramatic. An exhaustive exploration in
the parameter space (K2, K3) reveals that, in general, the breather adapts better to anharmonic
potentials since the resonance is nonlinear. The breather dynamics of the three cases where
the breather traverses the hairpin will be compared below.

Regarding the specifics of the DB propagation properties in the chain, we find that for a
given injection velocity λ, there exists a critical curvature that determines whether the breather
traverses the curved part of the hairpin. For the optimum case in figure 3(b), K2 = K3 = 6 and
the velocity parameter λ = 0.8, we plot in figure 4 the evolution of the breather for different
curvatures. We find that for large enough curvatures (small Nc), the breather cannot enter
completely in the curved region of the hairpin and it either rebounces or gets trapped in the
bend while for smaller curvatures, the breather traverses efficiently through the bend. The
critical penetration curvature depends on the initial DB velocity as in reference [18] and also
on the specifics of the perpendicular potential.

In order to understand the nature of the exchange between the two local orthogonal
directions, we focus on the local DB motion for three of the cases shown in figure 3(b). In
figure 5 we show the breather motion in the curved part of the chain for the angular coordinate.
Note here that when showing the motion in the curved part of the chain we use (absolute) polar
coordinates, σ n for the angular or longitudinal motion and rn for the radial or perpendicular
dynamics (see figure 1(b)). The longitudinal chain motion shown in figure 5 is similar in all
three cases and correponds predominantly to the x-motion for the breather in the straight part
of the chain. Due to the small energy loss, the period of the breather (hence, the period in the
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Figure 4. Fixing K2 = 6, K3 = 6 for Vp and λ = 0.8 for the translational velocity of the breather,
we vary the curvature of the hairpin with Nc. We show the position of the breather nmax at every
time. At t ∼ 170, the breather arrives at the curved region in all cases.
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Figure 5. Angular coordinate, σ n, for the breather in the curved part of the hairpin. The three
central sites located at point 2 in figure 1 are shown, although for different time windows, this
figure applies to the three cases in figure 6.

oscillations in figure 5) are slightly larger than Tb; we note that in the worst case this difference
reaches only the 2% level. The transverse component of the DB motion in the curve is
presented in figure 6 for three of the cases shown in figure 3. For the parameters of figure 6(a),
K2 = 1 and K3 = 0, we note that in this far-from-resonance case, the transverse breather
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Figure 6. Dynamics, in radial coordinates, rn, of the breather motion in the centre of the curve.
(a) Case with K2 = 1 and K3 = 0. (b) Case with K2 = 1 and K3 = 1. (c) Case with K2 = 6 and
K3 = 6. Note how only case (c) shows a coherent periodic motion with the same Tb for radial
coordinates. In all the panels, the central particle of the hairpin (at point 2 in figure 1) is shown
(solid curve), as well as the previous (dashed curve) and the following (dotted curve) nodes.

coordinates oscillate neither coherently nor with a period similar to the longitudinal one.
Although the majority of the breather energy is transmitted coherently longitudinally, the fact
that the perpendicular motion is aperiodic inhibits the efficiency of the propagation through
the bend and augments the energy loss. We observe similar behaviour in figure 6(b) for the
second set of parameters, although the perpendicular motion is, in this case, more coherent as
a result of the nonlinear nature of the potential and the subsequent induction of oscillations
at different frequencies. The most resonant situation is shown in figure 6(c). This potential
enables coherent radial oscillations that minimize DB energy losses and favours the motion of
the breather through the bend. This resonant motion affected through the geometrical coupling
between two orthogonal DB directions is a direct consequence of the good matching between
the period of the induced oscillation in the perpendicular potential and the breather period Tb
shown in figure 3(a).

We note that the combined oscillation in the longitudinal (figure 5) and radial (figure 6(c))
directions constitutes a two-dimensional breather that originates from the initial one-
dimensional FPU breather and came into existence as a result of the geometrical–dynamical
coupling between two perpendicular directions. We point out that the longitudinal motion
dominates the transverse motion, so the breather could be considered as a quasi-one-
dimensional with a small orthogonal component. In figure 7 we present a snapshot of the
breather as it reaches point 2 of figure 1. In order to compare with figure 2(a) we have plotted
relative polar coordinates, ζn ≡ σn − σn−1 − α, where α is the equilibrium angle for two
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Figure 7. (a) Relative angular coordinate, ζn, for the breather when it reaches point 2 of the
hairpin. (b) Radial coordinates for the breather at that point. The different curves correspond to
the beginning of the period (filled circles) and after Tb/2 (empty circles) for the resonant case in
figure 6(c).

consecutive sites in the curve. By doing so, ρn and ζn in figures 2(a) and 7(a), respectively, are
directly comparable. We note that the breather in the bend region, while continuing having a
longitudinal shape similar to the initial one, forms a multibreather in the radial direction. As
a result, this two-dimensional localized object moves efficiently in the bend with a complex
structure dictated by symmetry and energy reasons.

The adaptive feature of the 2D breather shown in figure 6(c) is more clearly observed in
figure 8. The efficient coupling between angular and radial motion for this case allows the
breather to adapt its orientation after some (≈4) oscillations before passing from one site to
the next one in the chain.

Finally, the breather, after traversing the bend region, re-enters in the second rectilinear
segment of the hairpin; the local geometry once again forces the DB to adapt to the new
environment. As a result, the breather evolves and transforms its vertical multibreather
structure into longitudinal motion, while shedding away miniscule amounts of energy that are
minimal in the most resonant case. The final shape of the breather is almost the same as that
of the one before entering the curve shown in figure 2.

4. Effect of low temperatures and dissipation

The stability of the breathers presented in previous sections is now tested against thermal
fluctuations. In order to connect the chain to a heat bath at temperature T we use the
Langevin prescription for each lattice site, even though other approaches might be more useful
in biological applications [6]; the equations of motion resulting from equations (1)–(3) are
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(a) (b) (c)

Figure 8. One-period (Tb) motion of the three central sites of the hairpin when the breather reaches
these positions. (a) The breather is entering the central site from below with the orientation of the
curve of the first site at the bottom. (b) After four periods Tb the breather is now in the central
site and has adapted its orientation. (c) After four more periods, the breather is passing the third
site (above) with a new adapted orientation. The continuous curve is the equilibrium line of the
particles.

further modified by the inclusion of a fluctuating contribution and a damping term, leading to

ẍn = − ∂

∂xn

[
Vd(dn) + Vp(rn)

] − γ ẋn + ηx
n(t)

(6)

ÿn = − ∂

∂yn

[
Vd(dn) + Vp(rn)

] − γ ẏn + η
y
n(t).

The ηi
n(t) are mutually uncorrelated zero-centred Gaussian δ-correlated fluctuations that satisfy

the fluctuation–dissipation relation〈
ηi

n(t)η
j
m(t ′)

〉
= 2γ kBT δij δnmδ(t − t ′) (7)

for both coordinates (i, j) = (x, y).
Discrete breathers do not survive to strong dissipation or noise and decay quite rapidly.

On the contrary, for small damping and temperature, DBs show a strong resistance to decay as
a result of the presence of the thermal bath. When DBs are compared with other nonstationary
lattice fluctuations induced by the noise, they show a very slow energy decay and a rather
good conservation of their integrity even after long times. In order to make these statements
more quantitative, we address numerically dynamical properties of the two-dimensional DBs
appearing in the curved part of our nonlinear chains. Implementation of damping and noise
in equation (6) has to be solved using the second-order Runge–Kutta method.

In figure 9 we present numerical results of the resonant hairpin case shown in figure 6(c),
with the presence of weak noise and damping (T = 0.0001 and γ = 0.001). DBs also exhibit in
this geometry a particular resistance to be destroyed by the thermal bath and show slow decay
yet retain their structure for a relatively long time. This resilience to decay is also present
when the DB has also adapted to the curved geometry, as is evident from the long-dashed line
in figure 9. The breather inside the hairpin shows similar structure and symmetry as shown in
figure 7.
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Figure 9. Energy of the localized structures (defined as Ebre in previous figures) for different
cases. The solid line corresponds to the mobile DB without heat bath (the same solid case in
figure 3(b)). The dotted line stands for the case with the DB in the straight part of the hairpin
without translational motion (λ = 0). The case of a mobile DB is shown as a dashed line. For
the long-dashed line, we enable the temperature once the DB has already entered the curve of the
hairpin (when the straight line breaks). In all the cases the parameters of the bath are T = 0.0001
and γ = 0.001.

An analysis of the simulation data also indicates that the breather period grows and its
amplitude decreases as a function of time. Moreover, if the breather is moving we observe a
reduction of its translational velocity. By increasing noise and damping these effects are en-
hanced in such a way that the breather loses its internal coherent motion and symmetry and can
be destroyed. A more detailed study of this phenomenology will be presented elsewhere [19].

5. Conclusions

Discrete breathers are nonlinear impurity modes in discrete lattices that are generally stable and
in many cases mobile. In elastic polymer-like chains that extend on the plane, DB dynamical
features are more complex. Presently, we use a standard FPU chain with nearest-neighbour
interactions augmented with onsite potentials placed in direction perpendicular to the chain
in order to study DB elastic and kinetic properties for a hairpin planar chain geometry. We
found that DBs propagate efficiently through the bend, especially when the longitudinal DB
frequency can resonate with perpendicularly placed onsite potential. This near resonance
improves in the presence of nonlinear terms in the perpendicular potential. In all cases some
DB energy loss is observed that increases in the less resonant cases. The motion is governed
by the local energy conservation of breather internal and translational motion. The breather is
seen to adapt to the local dynamical environment through small frequency shifts and velocity
alteration while inducing motion in the perpendicular direction. When a near resonance can be
induced with onsite nonlinear force field, the resulting two-dimensional breather moves very
efficiently through the curved region, while upon re-entering the straight segment it recovers
the one-dimensional properties. When thermal fluctuations and small damping are added in
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the system, the DB propagation remains similar but a very slow, yet discernible energy loss is
evident resulting finally in the DB decay. These DB features in polymer-like chains suggest
that the breathers are efficient energy transporters in bend polymer chains since they can adapt
to local changes and propagate with minimal distortion.
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